DIAGNOSING BARDET-BIEDL SYNDROME (BBS): TAKE A CLOSER LOOK

Discover more about this clinically and genetically diverse disease and how it may present in your patients¹

BBS IS A RARE AUTOSOMAL RECESSIVE CILIOPATHY THAT IS CLINICALLY AND GENETICALLY DIVERSE^{1,2}

Almost all major body systems contain primary cilia, which are vital to several biological processes^{32,33} **BBS ciliary dysfunction impairs various systems throughout the body**³²

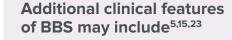
Brain4,15,16

- Hyperphagia and consequent obesity
- Cognitive impairment

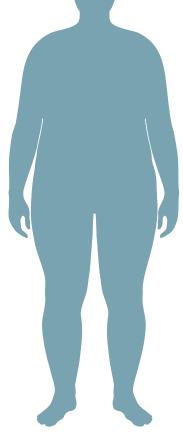
Kidney^{15,32}

Renal anomalies

Hypogonadism


Eyes^{5,13}

 Rod-cone dystrophy/ retinitis pigmentosa

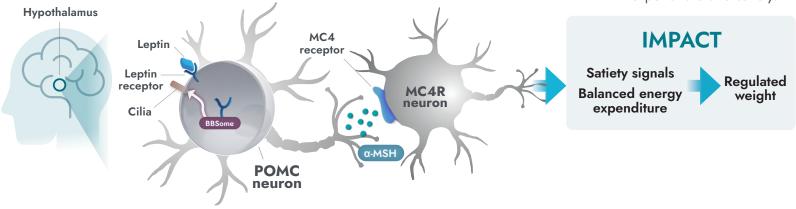


Skeletal⁵

Postaxial polydactyly

- Brain: speech delay, developmental delay, ataxia/poor coordination, anosmia/hyposmia
- Endocrine: diabetes mellitus
- Heart: congenital heart disease
- Skeletal: dental anomalies, brachydactyly/syndactyly

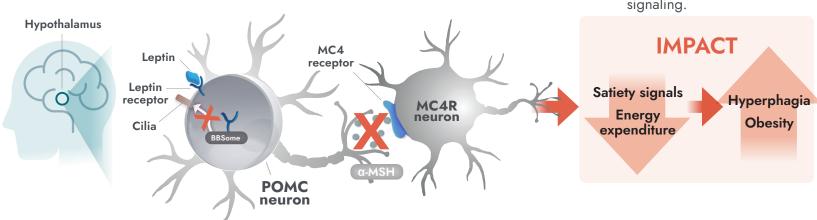
Primary cilia dysfunction within each organ system contributes to the highly variable phenotype in BBS³⁴


THE MC4R PATHWAY IN THE HYPOTHALAMUS IS A KEY NEURONAL PATHWAY IN REGULATING HUNGER, CALORIC INTAKE, AND ENERGY EXPENDITURE⁴

Functional MC4R pathway activity^{4,32,35,36}

The **BBSome** plays a central role in **cilia** function, including trafficking of the **leptin** receptors (LEPR) to allow leptin activation and satiety signaling.

Leptin binding to LEPR triggers a signaling cascade, including secretion of alpha-melanocyte-stimulating hormone (α-MSH) from the POMC neuron, which binds to the MC4 receptor to regulate energy expenditure and satiety.


Ciliary dysfunction in the hypothalamus leads to MC4R pathway impairment, which is a root cause of hyperphagia and obesity in BBS^{4,32}

Impaired MC4R pathway activity^{4,35,36}

In people with BBS, a variant in one or more BBS genes can disrupt the BBSome, leading to ciliary dysfunction and disruption of LEPR signaling.

Alpha-melanocyte-stimulating hormone (α-MSH) production is impaired or deficient, preventing activation of the MC4 receptor, therefore impairing regulation of energy expenditure and satiety signaling.

HOW BBS CAN PRESENT IN YOUR PRACTICE

Most common clinical features	Clinical manifestations		Potential assessments
Hyperphagia ^{4,7,8}	Pathological, insatiable hungerLong time to satiationShorter duration of satiation	 Prolonged feeling of hunger Severe preoccupation with food and distress if denied food, often associated with abnormal food-seeking behaviors 	Utilizing hyperphagia questionnaires, following up with patients/caregivers regarding their behaviors around food
Obesity ^{5,10-12}	Early-onset truncal obesity Normal birth weight, followed by rapid weight gain		Growth chart, tracking patients' BMI/ BMI Z-score over time
Visual impairment ^{5,13-15}	 Rod-cone dystrophy/retinitis pigmentosa (including night blindness, photophobia, legal blindness, diminution of color, overall loss of visual acuity) 	 Less common features may include: Strabismus Astigmatism Cataracts Color blindness Macular edema and degeneration Optic atrophy 	Electroretinography test (for retinitis pigmentosa only)
Cognitive impairment ^{15,16}	 Developmental delay (gross motor, fine motor, speech/language) Mild to moderate learning difficulties Speech delays, poor articulation, poor language interpretation 	 Behavioral problems (immaturity, frustration, obsessive/compulsive nature, poor concentration/hyperactivity) Gaze avoidance Lack of abstract thought 	 Developmental and/or neurocognitive assessment Routine developmental assessments from early childhood to adulthood Neuropsychiatric evaluation if signs/ symptoms of atypical behaviors or mood disorder
Renal anomalies ^{5,15,18-20}	 Cystic tubular disease Anatomical malformations Urinary tract abnormalities Hypertension Chronic renal failure Transplantation Polyuria/polydipsia Chronic tubulointerstitial nephritis Glomerular defects 	 Urinary concentrating defects Anatomical malformations at birth, including parenchymal cysts, calyceal cysts, calyceal clubbing and blunting, horseshoe kidney, fetal lobulation, scarring, unilateral renal agenesis, dysplastic kidneys, bladder obstruction, hydronephrosis, ectopic kidney, renal calculi, and vesicoureteral reflux 	 Regular monitoring/testing of renal function is recommended to diagnose and treat CKD early to prevent morbidity and mortality Ultrasound scan, isotope renography, labs (raised plasma urea and creatinine levels), intravenous pyelogram, renal ultrasonography, renal biopsy

Digit abnormalities ⁵	Postaxial polydactyly Brachydactyly Syndactyly		Physical examination or discussion with older patients/caregivers because extra digits are typically surgically removed in early childhood
Genitourinary abnormalities ^{5,13,15,16}	 In males: Hypogonadism Micropenis, small-volume testes, maldescent of testes, cryptorchidism, hypogonadotropic hypogonadism, delayed puberty, infertility 	In females:Uterine, fallopian, ovarian, or vaginal hypoplasia or atresiaLow fertility rates	 Check follicle-stimulating hormone, luteinizing hormone, estrogen, and testosterone levels if indicated due to delayed puberty Pelvic ultrasound in females to assess for malformations of uterus, fallopian tubes, ovaries, and vagina

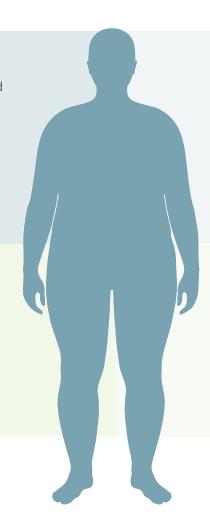
Additional clinical features	Clinical manifestations	Potential assessments
Dental anomalies ^{5,15,23}	 Crowding Malocclusion/micrognathia Enamel hypoplasia Discoloration Microdontia Taurodontism or short roots High-arched or deep palate Periodontal disease 	• Dental exam
Congenital heart disease ⁵	Valvular stenosisPatent ductus arteriosusCardiomyopathy	• Echocardiogram, chest x-ray
Speech delay ^{5,38-40}	High-pitched nasal speechSpeech delay and deficitsUnintelligible speech	 Assessments, such as Ages and Stages Questionnaires, the Language Development Survey, and the MacArthur-Bates Communicative Development Inventories
Neurological deficits ^{5,15,16}	AtaxiaClumsinessPoor coordination and balance	• MRI

BBS HAS A HIGHLY VARIABLE PHENOTYPE WITH KEY IDENTIFIABLE FEATURES⁵

BBS is clinically and genetically diverse, so not all people with BBS will present the same way or with all of these features^{1,2}

	Birth	First years of life (0 to 5 years)	Early childhood (up to 10 years)	Adolescence to adulthood (>10 years)
Postaxial polydactyly ^{5,16,21,22,27}	Extra digits (postaxial)	Typically surgically removed		
Renal anomalies ^{5,16,18}	Anatomical malformations	Progressive kidney disease	Polyuria/Polydipsia	Chronic kidney disease
Hyperphagia and obesity ^{4,5,7,28,29}	Normal birth weight	Rapid weight gain leading to early-onset, severe obesity, unusual food seeking	Hyperphagia and severe obesity persists	Continued severe obesity and hyperphagia persist, presenting as truncal obesity for adults
Cognitive impairment ^{5,15}		Developmental delay, speech delay	Specialized schooling needs, behavioral difficulties	Learning difficulties
Visual impairment ^{5,30}			Progressive vision loss, night blindness	Legal blindness
Hypogonadism ^{5,15}				Delayed puberty, genital anomalies

BBS IS CLINICALLY AND GENETICALLY DIVERSE


Factors to consider when diagnosing BBS

Clinical manifestations^{1,2,5}

- BBS is a ciliopathy with a highly variable phenotype and clinical features that vary greatly across individuals and evolve over time
- Some features may present more mildly or slowly depending on gene variant and other factors

Patient history

 Review patients' complete medical history. Some clinical manifestations of BBS may have been previously treated and/or not recognized as a symptom of BBS

Genetics1

- Genetic testing for BBS can provide additional diagnostic information to help inform your diagnosis. For more information, visit UncoveringRareObesity.com
- Results should be integrated into the overall clinical assessment of the patient and do not equate to a diagnosis on their own.
 Additionally, variant interpretation may change over time, as the information around the genetics of BBS continue to evolve

Family findings^{2,16}

- Family members have an increased risk of inheriting a pathogenic BBS gene, and siblings are generally diagnosed earlier
- Once one family member is diagnosed, others should be evaluated for BBS as well
- Phenotype can vary between siblings

Announcing the ICD-10 code for BBS **Q87.83**—effective as of October 1, 2023

EXPAND YOUR PERSPECTIVE ON BBS

BBS is a rare autosomal recessive ciliopathy^{1,2}

- Impairment in the MC4R pathway is a root cause of hyperphagia and obesity,
 2 common features of BBS⁴
- Other common features may include visual impairment, cognitive impairment, renal anomalies, postaxial polydactyly, and hypogonadism^{2,5,6}

BBS is clinically and genetically diverse, so consider the complete patient presentation^{1,2}

- BBS is a multisystemic disorder with a highly variable phenotype that can evolve over time^{1,5}
- Clinical manifestations, genetics, patient history, and family findings should all be considered when making a diagnosis

Click here to learn about a treatment for obesity due to BBS

References: 1. Manara E et al. Ital J Pediatr. 2019;45(1):72. 2. Forsythe E et al. Front Pediatr. 2018. doi:10.3389/fped.2018.00023. 3. Vaisse C et al. Cold Spring Harb Perspect Biol. 2017;9(7):a028217. 4. Eneli I et al. Appl Clin Genet. 2019;12:87-93. 5. Forsythe E, Beales PL. Eur J Hum Genet. 2013;21(1):8-13. 6. Pigeyre M et al. Clin Sci (Lond). 2016;130(12):943-986. 7. Sherafat-Kazemzadeh R et al. Pediatr Obes. 2013;8(5):e64-e67. 8. Heymsfield SB et al. Obesity (Silver Spring). 2014;22(suppl 1):S1-S17. doi:10.1002/oby.20646. 9. Hample SE et al. Pediatrics. 2023;151(2):e202206064. 10. Styne DM et al. J Clin Endocrinol Metab. 2017;102(3):709-757. 11. Defining childhood weight status. Centers for Disease Control and Prevention. Accessed May 20, 2023. https://www.cdc.gov/obesity/basics/childhooddefining.html, 12. Obesity and overweight. World Health Organization, Published June 9, 2021, Accessed May 20, 2023, https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. 13. Florea L et al. Genes (Basel). 2021;12(9):1353. doi:10.3390/genes12091353. 14. Meng X et al. Front Cell Dev Biol. 2021;9:635216. doi:10.3389/fcell.2021.635216. 15. Beales PL et al. J Med Genet. 1999;36(6):437-446. 16. Forsyth R et al. Bardet-Biedl syndrome overview. In: Adam MP et al, eds. GeneReviews®. University of Washington; 2003. Updated July 23, 2020. Accessed May 20, 2023. https:// www.ncbi.nlm.nih.gov/books/NBK1363. 17. Forsythe E et al. J Am Soc Nephrol. 2017;28(3):963-970. 18. Putoux A et al. Pediatr Nephrol. 2012;27(1):7-15. 19. Panny A et al. J Dent Res. 2017;96(12):1361-1369. doi:10.1177/0022034517716913. 20. Sandilands EA et al. Br J Clin Pharmacol. 2013;76(4):504-515. 21. Khan OA et al. Cureus. 2019;11(2):e4114. 22. Vlahovic AM, Haxhija EQ. Pediatric and Adolescent Plastic Surgery for the Clinician. Springer; 2017:89-105. 23. Majumdar U et al. BMJ Case Rep. 2012;2012:bcr1220115320. 24. Developmental Screening. Ages & Stages Questionnaire. Accessed January 30, 2023. https://agesandstages.com/about-asg/why-screening-matters/developmental-screening. 25. The Language Development Survey (LDS). Achenbach System of Empirically Based Assessment. Accessed January 30, 2023. www.aseba.org/research/the-language-development-survey-lds. 26. The MacArthur-Bates Communicative Development Inventories (MB-CDIs). MacArthur-Bates CDI. Accessed January 30, 2023. www.mb-cdi.stanford.edu. 27. Agrawal H et al. Pediatr Rev. 2018;39(5):e21-e23. 28. Pomeroy J et al. Pediatr Obes. 2021;16(2):e12703. 29. Katsanis N et al. Hum Mol Genet. 2001;10(20):2293-2299. 30. Weihbrecht K et al. Med Res Arch. 2017. doi:10.18103/mra.v5i9.1526. 31. Kyrou et al. Clinical problems caused by obesity. In: Feingold KR et al, eds. Endotext. MDText.com, Inc.; 2018. Updated January 11, 2018. Accessed January 30, 2023. https://www.ncbi.nlm.nih.gov/books/NBK278973/. 32. Blaess S et al. J Clin Invest. 2021;131(8):e148903. doi:10.1172/JCl148903. 33. Pala R et al. Int J Mol Sci. 2017;18(11):2272. doi:10.3390/ijms18112272. 34. Zaqhloul NA et al. J Clin Invest. 2009;119(3):428-437. doi:10.1172/JCl37041. 35. Huvenne H et al. Obes Facts. 2016;9(3):158-173.doi:10.18103/mra.v5i9.1526. 36. Seo S et al. Hum Mol Genet. 2009;18(7):1323-1331. 37. Focsa IO et al. Biomed Rep. 2021;15(6):103. doi:10.3892/br.2021.1479.

